LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Sc. DEGREE EXAMINATION – MATHEMATICS FIRST SEMESTER – APRIL 2023 MT 1500 – ALGEBRA, ANALY. GEO., CALCULUS & TRIGONOMETRY	
Date: 06-05-2023 Dept. No.	Max. : 100 Marks
Time: 01:00 PM - 04:00 PM PART - A	
Answer ALL questions: $(10 \times 2 = 20)$	
1. State Leibnitz's theorem.	
 What is the nth derivative of y = x^m, if m < n? Find the slope of the curve r = a(1 - cosθ) at θ = π/2. 	
4. What is the cartesian formula to find the radius of curvature?	
5. What is the condition for an equation $f(x) = 0$ to have at least one root between a and b?	
6. Form the equation, one of whose roots is $\sqrt{3} + \sqrt{5}$.	
7. Prove that $\sin h^{-1}x = \log_e(x + \sqrt{x^2 + 1})$.	
8. Evaluate $\lim_{x\to 0} \frac{\tan 2x - 2\tan x}{x^3}$.	
9. Define conic section.	
10. Find the pole of the line $2x = y$ with respect to the parabola $y^2 = 2x$.	
PART - B	
Answer any FIVE questions:	$(5 \times 8 = 40)$
11. If $y = \sin ax + \cos ax$, find $\frac{d^n y}{dx^n}$.	
12. Prove that the subtangent to the curve $y = a^x$ is of constant length. 13. Find the radius of the curvature of the curve $x^4 + y^4 = 2$ at the point (1,1).	
14. Find the pedal equation of the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with pole at its center.	
15. Solve the equation $x^4+2x^3-5x^2+6x+2=0$ given that $1+\sqrt{-1}$ is a root of it.	
16. Prove that $32\sin^4 q \cos^2 q = \cos 6q - 2\cos 4q - \cos 2q + 2$.	
17. Find the locus of poles of chords of parabola subtending a right angle at the vertex. 18. Find the condition that the lines $lx + my + n = 0$ and $l'x + my' + n' = 0$ may be conjugate with respect	
to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.	
PART – C	
Answer any TWO questions: 19. (a) If $y = sin(m sin^{-1}x)$, Show that $(1 - x^2)y_2 - xy_1 + m^2y = 0$ and	$(2 \times 20 = 40)$
$(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} + (m^2 - n^2)y_n = 0.$	(13)
(b) Find the maximum value of the directional derivative at the point (1) $2x^2 + 3y^2 + 5z^2$.	$(1,1,-4)$ of the function $\emptyset =$ (7)
20. (a) Evaluate the maximum value of $x^2 + y^2 + z^2$ when $x + y + z = a$.	(7)
(b) Find the positive root of the equation $x^3 - 2x^2 - 3x - 4 = 0$ correct to two places of decimals using Horner's method. (13)	
21. (a) Solve the equation $x^3 - 19x^2 + 114x - 216$ given that the roots are in	n GP. (6)
(b) Separate $\tan h (x + iy)$ into real and imaginary parts.	(14)
22. (a) Evaluate $\lim_{x\to 0} \frac{\tan x + \sin x}{\sin^3 x}$.	(4)
(b) Prove that the area of the parallelogram formed by the tangents at the end two conjugate diameters of an ellipse is constant and equal to the product	
&&&&&&&&&	